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Abstract

This work studied the thermal conductance of thin layers with randomly oriented composites by the percolation
theory, and developed an e�ective-medium approximation (EMA) model for triple bond percolation systems. The

results showed that the thin layer is anisotropic in conductivities when its thickness is lower than the correlation
length. The conductivity in normal direction increases with decreasing thickness while the in-plane conductivity
declines. The signi®cance of this thickness e�ect is a function of the concentration of good conductor and the

thermal conductivity ratio of the phases in the composites. A threshold concentration exists for the conductivity of
bulk composites, beyond which the e�ective thermal conductivity increases signi®cantly from that of the poor
conductor with increasing concentration.

The developed EMA model agrees quite well with the numerical simulation and is expected being applicable to
predict thermal conductivities of composites using the coordination number as a ®tting parameter 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Composite materials are applied extensively in indus-

tries. For example, gas±solid composites for thermal

insulation, conductive adhesive pastes, mixture of

liquid/solid materials and metal powders, sorption

agents for absorb-refrigeration and phase-change heat

reservoir, are all composite materials. The thermal con-

ductance of these materials is one of the topics of

interest both for application purposes and for funda-

mental understanding.
The study of thermal characteristics of the bulk

composite materials has been developed. It is often

assumed that the composites are composed of rep-
resentative periodical unit cells [1±4]. The conductive
characteristics of the unit represent the bulk property
of the composite material. One can obtain these

characteristics of the composite material by studying
the e�ective-conductivity of the unit cell. The hypoth-
esis of periodical unit cell extremely simpli®es the com-

posite structure and makes the solution of heat
conduction relatively easy. For a bulk composite ma-
terial, each unit is very small compared with the bulk

size and the material is macroscopically uniform.
However, composites are often applied between two
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solid surfaces, such as the conducting paste. When the

composites are very thin or the percentage of the good

conductor is low, the composites could not be recog-

nized as uniform, and hence, a unit cell could not rep-

resent the properties of the composites anymore. The

e�ects of random arrangement of unit cells should

have to be considered. In this paper, `thickness' or

layer number refers to the relative thickness that is the

ratio of the thickness over the typical size of the par-

ticles in the composites.

The studies of transport phenomena related to disor-

dered features of composites started relatively late.

Kirpatrick [5] in 1971 put forward the e�ective-med-

ium approximation theory (EMA) to predict the elec-

trical conductivity of disordered composite materials.

Zhang and Stroud [6] applied EMA to the resistance

model to investigate the in-plane electrical conductivity

of thin layers composed of conducting and non-con-

ducting materials, and found that the e�ective resist-

ance had a transition from two-dimension to three-

dimension with the increase in layer thickness. The

EMA model agrees quite excellently with the computer

experiments of the in-plane electrical conductivities of

the thin layer composites with bond percolation. Nei-

mark [7] derived the relation of electrical conductivity

with the concentration of good conductor and the

layer number for randomly oriented composites by

fractal and percolation theory. The variation of critical

concentration (at which percolation occurs for the ®rst

time) of good conductor with layer numbers in the in-

plane direction was also derived. The predicted critical

concentration was found in consistent with EMA

model [6]. The electrical conductivity model from [7] is

relevant only close to percolation threshold (critical

concentration) and is not suitable to analyze the data

far from the critical concentration.

The studies of the anisotropic thermal conduc-

tance of thin layers of disordered composites are

few. Phelan and Nimann [8] in 1997 applied the

thermal resistance network and studied the thermal

conductivity of two-dimensional thin layers of disor-

dered composites by numerical scheme and statisti-

cal method. From the view of percolation, the

conduction in a thin layer is not two-dimensional

but three-dimensional and the dimension will a�ect

the result. Liang et al. [9] applied percolation the-

ory, simple e�ective-medium approximation (EMA)

and probability statistics to investigate the thickness

e�ect on the thermal conductivity of disorder com-

posite layers, the research is more qualitative than

quantitative.

Although no report of experimental research of

the thickness e�ect on thermal conductivity for thin

layers of disordered composites has been found, the

thickness e�ect on electrical conductivity has already

been experimentally observed [10,11]. Ottavi et al.

[10] observed an increasing slope of resistance versus

height for packed mixtures of conducting and non-

conducting spheres, indicating an increase in the

electrical conductivity with decreasing thickness.

Maaroof and Evans [11] measured the parallel resist-

ance during the growth of Pt and Ni ®lms. In the early

stages of growth, small clusters nucleate on the sub-

strate surface and grow into islands of the condensed

phase. With continued deposition the islands grow

until they come into contact, eventually creating a met-

allic network that in-®lls then to form the continuous

®lm. Maaroof and Evans [11] observed a decrease of

the ®lm resistance with increasing deposition thickness.

The variations of the conductivity with thickness in

such materials arise from the random distribution of

clusters, not from the con®nement of the mean free

path of the heat carriers by boundaries. The conduc-

tivity of each component in the composites is assumed

Nomenclature

k thermal conductivity
k_ the conductivities in normal directions
k| the conductivities in-plane directions

k1 the conductivity of good conductor
k2 the conductivity of poor conductor
ka thermal conductivity of the bond in which one

neighboring cell is good conductor and another
is poor conductor

m layer thick in x direction

p probability or concentration of the good con-
ductor cell

pc threshold concentration
pc, 2 threshold concentration in 2D system

pc, 3 threshold concentration in 3D system
Q heat-conduction quantity
S the conduction area

t index
t2 index for 2D system
t3 index for 3D system

z average coordination number
DT the temperature di�erence
Dx the conduction distance

n3 universal index
e three-dimensional percolation correlation

length
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to be independent of the particle size. Recently,
Michels et al. [12] applied thermal spray techniques to

produce resistance-heating elements that provide very
high heat ¯uxes to solid surfaces. They electrically
insulated the surface to be heated by depositing an

alumina layer on it, and on this layer, they deposited a
thin metallic layer that served as an electrical heating
element. The thickness of the insulating layer may in

principle be determined by calculating the electrical re-
sistance required to prevent signi®cant current from
conducting to the underlying copper layer to be

heated, using the resistivity of sprayed alumina at an
appropriate mean temperature. Their testing, however,
showed that heaters deposited onto insulators having
thickness in the predicted range (about 10 mm) had in-

adequate electrical insulation for air plasma spray
®lms and high velocity oxygen fuel ®lms. The re-
duction in the electrical insulation may also be caused

from the thickness e�ect due to the disordered struc-
ture in the insulating layers.
Similar to the electrical conductivity, it is expected

that there exists a thickness e�ect on thermal conduc-
tivity of thin layers of disordered composites. The
present work discussed ®rst the anisotropic thermal

conductance for thin layers of randomly disordered
composites from point of view of percolation and
EMA model and derived an EMA model based on
bond percolation. Then, computer experiments were

applied to study quantitatively the thermal conduc-
tivities of thin layers of randomly disordered compo-
sites in the normal and in-plane directions. Finally, a

comparison between analytical model and numerical
result was made.

2. Thermal conductance of thin layers of randomly

disordered composites

Fig. 1 shows a site percolation system to be ana-
lyzed. Each site is occupied either by one phase of
good conductor cell (dark one) or by another phase of

poor conductor cell (white one). The good and poor
conductor cells are distributed randomly and they have
constant thermal properties (that is, there is no size

e�ect on each cell). The thermal conductivity of thin
layers is the topic of interest in the present work. The
number of layers in x direction is limited while the

numbers of layer in other two directions are in®nite.
The variation of numbers of layers in x direction will
a�ect the thermal conductivities both in the normal
(x ) and in-plane directions ( y and z ), which is called

the layer e�ect.

2.1. The percolation model

The heat conduction in a two-phase disordered com-

posite layer could be treated as a percolation process

[9]. Fig. 1 shows a percolation layer, which is com-

posed of m layer thick in x direction. Each cubic site is

occupied either by a good conductor or by a poor con-

ductor. The good conductor cells distribute in the

whole layer randomly with a probability or concen-

tration of p. A good conductor cell is either isolated

by the adjacent poor conductor cells or connected to

the adjacent good conductor cells to form a cluster,

i.e., a set of connected good conductor cells bounded

by poor conductor cells. When the probability of good

conductor cells is low, the length of the cluster is

short, and all clusters are ®nite ones. In other words,

there is no path linking the top and bottom. The con-

ductivity of the layer is close to that of poor conduc-

tor. When p is large, there is conductive path between

top and bottom, or there are in®nite clusters connect-

ing the top and bottom. So the e�ective thermal con-

ductivity of the composite is enhanced obviously.

There is a threshold concentration pc of good conduc-

tor cells statistically where for the ®rst time the heat

current can percolate from one edge to another

through the cluster of good conductor. This cluster is

called in®nite one.

For a bulk composite material, the distribution of

good and poor conductor could be regarded as uni-

form macroscopically although it may not be the case

locally. For a thin layer, this local non-uniformity will

give rise to changes in thermal conductivity from that

of the bulk one in opposite trends in the normal and

in-plane directions.

In the normal direction, with the increasing number

of layers, the number of conducting paths joining the

top and the bottom surface begin to reduce, which

results in reduction in the heat-conduction quantity Q,

and therefore, the e�ective thermal conductivity in nor-

mal direction declines. As an illustration, let's see a

Fig. 1. A three-dimensional percolation layer composed of

randomly disordered composite.
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simple network of 2 � 2 � 1 shown in Fig. 2. Suppose
the good and poor conductor occupies half the sites in

the network respectively. There will be two conducting
paths of good conductor. If the thickness is doubled,
the network becomes 2 � 2 � 2. If there are two good

conductor cells on the top and bottom respectively, the
existence of two conductive paths of good conductor
possess a probability of 25% and the probability of

only one conductive path is 50%. The left 25% prob-
ability remains for the case where there is no conduc-
tive path of good conductor. Statistically, there is one

conductive path. Actually, the conductive paths should
be less than one if three to four good conductor cells
exist in one layer. In this case the conduction area S
and the temperature di�erence DT are constant, the

distance Dx is doubled. According to the de®nition of
thermal conductivity �k � QDx=SDT), the thermal con-
ductivity k is reduced because the heat ¯ux Q becomes

less than one half of its original value.
In the analysis of the in-plane conductivity, the

length of conductive paths Dx and the temperature

di�erence DT are invariable. As shown in Fig. 1 (for
simplicity, it is assumed that identical number of in®-
nite clusters appears in each layer), when the number

of layer increase from one to two, ®nite clusters in
each layer may join to form new in®nite clusters. The
total number of in®nite clusters includes the ones in
each layer and the ones formed between adjacent

layers. Although the area S is doubled, the conductive
paths are more than doubled, the e�ective thermal
conductivity in the in-plane direction is increased. So

there exists an anisotropic thermal conductance in thin
layers of randomly distributed composites.
For the percolation system composed of a� a� a

cells shown in Fig. 1, it is more di�cult to form an in-
®nite cluster of good conductor connecting the top and
bottom surface with increasing layer number. More
percentage or concentration of good conductor cells

would be required to form an in®nite cluster. The
threshold concentration depends on the thickness of
the layer. For the percolation along y direction, when

m � 1, the system is two-dimensional, and pc � pc2
(where pc, 2 is the threshold concentration in 2D sys-

tem); when m41, the system is 3D, and pc4pc, 3

(where pc, 3 is the threshold concentration in 3D sys-

tem). The values of pc, 3 and pc ,2 depend on the lattice
structure and types of percolation. For the problem of
sites on a cubic lattice pc, 310:3117±0:3333: For the

problem of sites on a square lattice, pc, 210:5±0:59275
[5±7,13]. For bond percolations, the thresholds are
di�erent. When the number of layer m equal to other

value, pc is between pc,3 and pc, 2 [7]

pc � pc, 3 � �pc, 2 ÿ pc, 3 �mÿ1=u3 �1�

where u3 is a universal index which describes the diver-
gence of the three dimensional percolation correlation

length e � ajpÿ pcjÿu3 : It is not di�cult to understand
this decrease of pc with increasing m in the in-plane
direction because of the appearance of new in®nite

clusters formed between layers.
The correlation length e is a measure of character-

istics of cluster-length in percolation system. When the

percolation system is much thicker than e, the system
behaves like isotropic materials, and when the thick-
ness of the percolation system is less than e, the system
would be anisotropic, whose property is related to

thickness. Theoretically, the system is isotropic when
m41 and the conductivities in all directions should
have identical value. In practice, when m is large

enough, the conductivities in normal and in-plane
directions are independent of the layer number and k?
� kj � k1�pÿ pc;3�t3 (where p > pc and near pc, k1 is the

conductivity of good conductor, t is an index, subscript
3 indicates 3D, t311:6±2:9 [7]). For limited layers, the
thermal conductivity in the normal direction is [9]

k? � k1

h
pc � �pÿ pc �m1=u3

i
mÿt3=u3 : �2�

The thermal conductivity in the in-plane direction is [9]

kj � k1m
�t2ÿt3 �=u3 �pÿ pc �t2 �3�

where t2 = 1.3. These equations con®rm the above dis-
cussions of anisotropic conductance in thin layers of
disordered composites.

2.2. E�ective-medium approximation model

The coordination number is de®ned as the number

of contacting neighbors to a given particle site or the
number of the nearest neighbor bonds for a given
bond. For neighboring cubic cells in Fig. 1, heat is

conducted through the thermal resistance between
them. Each cell has six neighboring cells and therefore
there are six thermal resistors connecting adjacent

cubic cell sites.
These resistors can be regarded as bonds. When the

system is two-dimensional, each bond has six nearestFig. 2. A simple con®guration of good and poor conductor.
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neighbor bonds. The coordination number is six (there
is no neighbor bonds on the top and bottom). When

the layer number goes toward in®nity, each bond has
®ve nearest neighboring bonds at each end and the co-
ordination number is 10. Generally, the number of the

layers of the system would be ®nite. The average co-
ordination number is 6±10, and could be described as

z �
�
6� 10�m-1�

�
=m: �4�

When m = 1, z = 6, it is a 2D system; when m = 2,

z = 8; when m41, z = 10, it is a 3D system.
A bond resistor is formed from the contribution of

neighboring cells. If the neighboring cells are both

good conductor cells, the bond has a thermal conduc-
tivity of good conductor. If the neighboring cells are
both poor conductor cells, the bond has a thermal con-
ductivity of poor conductor. If one neighboring cell is

good conductor and another is poor conductor, the
bond has a thermal conductivity of
ka � 2k1k2=�k1 � k2�, which is a series connection of

thermal resistance contributed from the neighboring
cells. So, the system is a triple bond percolation. The
probability of good conductor cell having a neighbor-

ing good conductor cell is p 2 and the probability of
poor conductor cell having a neighboring poor con-
ductor cell is �1ÿ p� 2: A good conductor cell neighbor-

ing a poor conductor cell possess a probability of
2p�1ÿ p�: These three probabilities correspond to three
kinds of bonds mentioned above. Kirkpatrick [5] devel-
oped an EMA model for binary bond percolation sys-

tem. Following the procedure and treating the
randomly oriented composite system as a triple bond
percolation system, the in-plane thermal conductivity

can be derived as

p 2 k1 ÿ kj
k1 � �z=2ÿ 1�kj � 2p�1ÿ p� ka ÿ kj

ka � �z=2ÿ 1�kj

� �1ÿ p� 2 k2 ÿ kj
k2 � �z=2ÿ 1�kj

� 0 �5�

where p is the volume percent or concentration of the
good conductor cells, k1 and k2 are the conductivity of
the good and poor conductor cells respectively, k| is

the e�ective conductivity in the in-plane direction. The
solution of Eq. (5) should satis®es k1 > kj > k2:
The EMA method can also predict the variation of

threshold concentration with layer numbers. A simple
analytical result can be obtained from Eq. (5)

pc � �2=z�0:5 �6�

by neglecting k| and k2. Hence, pc = 0.58 for 2D per-

colation system, and pc = 0.45 for 3D percolation sys-
tem.

2.3. The computer experiments

The absence of experimental data makes it hard to
compare theoretical analyses. However, computer ex-

periments or simulations can supply thermal conduc-
tivities for the comparison.
As shown in Fig. 1, the thin layer is composed of

cubic cells of good and poor conductor. A temperature
gradient is applied in the normal direction for the cal-
culation of thermal conductivity in normal direction.
The control equation of conduction is discretizd on the

control volume by ®nite di�erence method. Each cubic
cell is treated as one control volume and the tempera-
ture at the cell center is regarded as that of the cell.

The thermal resistance between adjacent cells is the ad-
dition of the contribution from each cell. The layer
number in the normal direction is ®nite while the layer

numbers in other directions are in®nite. It is found
that the layer e�ect is negligible when the layer number
is beyond 20. As to observe the layer e�ect, the num-
ber of layers is limited below 20 in the normal direc-

tion and the numbers of layers in other direction are
selected as 100. In the calculation, a random function
uniformly distributed between 0 and 1 is used to at-

tribute the conductivity of each cell. If the random
number is smaller than p, this cell is a good conductor;
otherwise it is a poor conductor. The temperature dis-

tribution is obtained by numerical iteration and the
convergence conditions require that the temperature
di�erence between successive iterations is smaller that

10ÿ4 and the energy balance between the input and
output surface is within 2%. For each concentration of
good conductor, the calculations are repeated three
times with di�erent distributions of conductor cells

and the e�ective thermal conductivity is then averaged.
Fig. 3 illustrates the numerical results of the thermal

conductivity in normal direction. The conductivity

decreases with increasing layer numbers no matter
what the concentration of the good conductor is. The
variation of thermal conductivity is notable when the

layer number is smaller than 5. When m>10, the con-
ductivity approaches to a constant. When m = 20, the
conductivity has no layer e�ect in the normal direction
and k_ = k|. The di�erence in thermal conductivities

between phases has in¯uences on the layer e�ect. The
larger k1=k2 is, the more obvious the layer e�ect.
In Fig. 4, the variation of the e�ective thermal con-

ductivity with the concentration of good conductor for
a 3D system is shown. From this ®gure, the threshold
concentration is around pc = 0.4, which is consistent

with the prediction of the percolation theory but is
somewhat lower than prediction from simpli®ed Eq.
(6).
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The simulation of the in-plane thermal conductivity

is similar to that of the normal one, with the tempera-
ture di�erence being applied in y-direction. Fig. 5 pic-
tures the e�ective thermal conductivity in the in-plane

direction as a function of layer number and the con-
ductivity ratio of good over poor conductors. The vari-
ation of the e�ective thermal conductivity agrees with
the prediction of EMA model and the percolation the-

ory in trend. The in-plane conductivity grows with

increasing layer thickness and is notable within layers

fewer than 5. When m> 5, the conductivity is close to

a constant. The more di�erence in properties of the

two phases of conductors, the more signi®cant the

layer e�ect is. The in¯uence of the threshold concen-
tration can also be found in the in-plane thermal con-

duction. The threshold concentration declines when the

system changes from 2D to 3D with increasing layer

number. If the concentration of good conductor is

small, such as p � 0:2, the conductivity is almost

invariable and is close to the value of poor conductor.

If the probability of good conductor is greater than
the critical value, such as p � 0:55, the layer e�ect is

clear. When the concentration of good conductor is

nearby 100%, the e�ective conductivity in the in-plane

direction is approximately equal to the value of good

conductor and almost no layer e�ect exists. k| = k_ at

m = 20, and the variation of kj0p consists with that

of k?0p:
The e�ective conductivity obtained from computer

experiments is compared with EMA model in Fig. 5.

The di�erence between the two methods is quite small

at low and high concentration. At intermediate concen-
tration, the EMA model predicts a little bit lower con-

ductivity than the computer simulation, the maximum

deviation may be up to 30%. Although the agreement

Fig. 3. The numerical result of the normalized normal thermal conductivity versus layer thickness.

Fig. 4. The numerical simulation of the e�ective thermal con-

ductivity of bulk composites versus concentration of good

conductor.
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is not as excellent as that was reported for a binary
bond percolation system [5,6], it is still good enough
for engineering applications. It is quite possible to

apply Eq. (5) to predict the thermal conductivities of
composites. As was found by [14], the coordination
number is related to the porosity. One can compare

Eq. (5) with experimental data using the coordination
number z as a ®tting parameter and set up a relation
of the coordination number with porosity. Once this
relation is determined, then Eq. (5) can predict the

e�ective thermal conductivity of composites.
Fig. 6 shows the e�ective conductivity in the in-

plane direction versus the concentration of good con-

ductor for a 2D system. It is easy to determine the
critical concentration for the 2D system being around
0.5.

3. Conclusion

The layer e�ect and the threshold concentration for

randomly disordered composite material by percola-
tion theory is analyzed, and an EMA model for the
triple bond percolation system is developed and com-

pared with computer experiments. It is found that: (1)
when the layer thickness of the composite material is
much larger than correlation length (the critical value),

the material is homogeneous and the conductivity in
the in-plane and normal directions are equal and do

Fig. 5. The numerical result of the normalized in-plane thermal conductivity versus layer thickness and its comparison with EMA

model.

Fig. 6. The numerical simulation of the e�ective thermal con-

ductivity versus concentration of good conductor for a two-

dimensional percolation system.
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not vary with layer thickness; (2) when the thickness is
less than or nearby the correlation length, the thin

layer of composites is anisotropic and the conductivity
changes with the thickness. The normal thermal con-
ductivity decreases with increasing thickness while the

in-plane thermal conductivity increases. The signi®-
cance of the thickness e�ect is in¯uenced by the con-
centration of good conductor and the ratio of the

conductivities of two phases in the composites, a larger
conductivity ratio and an intermediate concentration
will give rise to more signi®cant thickness e�ect. As

the layer number (that is, the ratio of the layer thick-
ness over the characteristic size of particles) increases
to beyond 20, no thickness e�ect exists and the layer
of composite is isotropic. There is a threshold concen-

tration of good conductor for thermal conductance of
composites beyond which the conductivity increases
sharply and below which the conductivity is almost a

constant.
The agreement between the triple bond EMA model

and computer experiments are quite satisfactory and

the EMA model may be applied to predict the thermal
conductivity of composite materials by using the co-
ordination number as a ®tting parameter.
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